Soldier's Personalized Learning Based on Dynamic Ant-Genetic Algorithm
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [9]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Confronting the situation of uneven educational background, knowledge comprehension and master speed of soldiers, stereotype education system of soldier's occupational skill no longer adapts the demand of network era development and informational military construction. The paper puts forward to the tactic of dynamically call ant algorithm and genetic algorithm according to the best fusion point after analyzing the existing problems in soldier's occupational skill education and the features of ant algorithm and genetic algorithm, so as to urge the optimization results of ant algorithm to optimize the initializing population of genetic algorithm. In addition, in order to find the personalized learning path suited to every soldier, the personalized learning process of soldiers is transformed into a typical combinatorial optimization problem successfully by imitating traveling salesman problem. The experiment results show that the convergence rate and optimization capability of the improved ant colony genetic algorithm is greatly improved.

    Reference
    1 焦冰.军队装甲装备保障专业士兵职业技能鉴定法规制度汇编.北京:国防工业出版社,2012.
    2 程岩.在线学习中基于群体智能的学习路径推荐方法.系统管理学报,2011,2:232-237.
    3 夏亚梅,程渤,陈俊亮,孟祥武,刘栋.基于改进蚁群算法的服务组合优化.计算机学报,2012,2:2270-2281.
    4 宋志飞.基于蚁群算法的TSP问题研究[硕士学位论文].赣州:江西理工大学,2013.
    5 杨学峰.蚁群算法求解TSP问题的研究[硕士学位论文].长春:吉林大学,2010.
    6 武交峰.应用遗传算法提高蚁群算法性能的研究[硕士学位论文].太原:太原理工大学,2007.
    7 尹红艳,杨沛,周卫红.一种求解TSP问题的蚁群遗传混合算法.信息与电脑(理论版),2010,3:155-156,158.
    8 高尚,张晓如.蚁群遗传混合算法.数学的实践与认识, 2009,24:93-98.
    9 朱庆保,杨志军.基于变异和动态信息素更新的蚁群优化算法.软件学报,2004,15(2):185-192.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李东,王虎强.基于动态蚁群遗传算法的士兵个性化学习.计算机系统应用,2015,24(11):204-208

Copy
Share
Article Metrics
  • Abstract:1300
  • PDF: 2336
  • HTML: 0
  • Cited by: 0
History
  • Received:April 15,2015
  • Revised:May 07,2015
  • Online: December 03,2015
Article QR Code
You are the first990823Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063