Fisher Kernel Construction Method Based on Gaussian Distribution
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Based on the actual application background and the supervised learning situation in which samples of each class comply with Gaussian distribution, we propose a new method for Fisher kernel construction. With the help of classification information in the sample, this method use maximum likelihood estimation rather than EM algorithm to estimate the GMM parameters, which can effectively reduce the time complexity for Fisher kernel construction. A simulation experiment on standard face database shows that the above-mentioned method combined with Fisher kernel classification can not only reduce the time complexity of fisher kernel construction, but also exceed the traditional Gaussian kernel and polynomial kernel in terms of recognition rate. The study of this method will benefit the application of Fisher kernel from speech recognition to image recognition.

    Reference
    Related
    Cited by
Get Citation

黄可望,方万胜,朱嘉钢.基于高斯分布监督学习样本的Fisher核构造方法.计算机系统应用,2015,24(10):233-237

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 23,2015
  • Revised:June 08,2015
  • Adopted:
  • Online: October 17,2015
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063