Energy-efficient Real-time Scheduling Based on Multidimensional Limitation in Multi-core Systems
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [33]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    This paper introduces the multidimensional-limitation-based challenges for multi-core systems such as practical limitations of processor, preemptive scheduling and parallel task model. To solve this problem, it discusses the energy-efficient real-time scheduling strategies based on the practical multidimensional models including the processor overhead model and limited-preemptive model and complex parallel task model, and provides an theoretical and technical reference for the application of multi-core systems to real-time embedded field.

    Reference
    1 Saidani T, Piskorski S, Lacassagne L, Bouaziz S. Parallelization schemes for memory optimization on the cell processor: a case study of image processing algorithm. In: Pierfrancesco F, ed. The Workshop on Memory Performance: Dealing with Applications. New York. ACM. 2007. 9-16.
    2 Hirata K, Goodacre J. Arm mpcore: the streamlined and scalable arm11 processor core. In: Onodera H, ed. Asia and South Pacific Design Automation Conference 2007, Yokohama. IEEE. 2007. 747-748.
    3 雷霆.基于动态电压调整的实时节能调度方法研究[博士学位论文].合肥:中国科学技术大学,2005.
    4 易会战.低功耗技术研究-体系结构和编译优化[博士学位论文].长沙:国防科学技术大学,2006.
    5 Jejurikar R, Pereira C, Gupta R. Leakage aware dynamic voltage scaling for real-time embedded systems. Malik S, eds. Proc. of the 41st Annual Design Automation Conference. San Diego. ACM. 2004. 275-280.
    6 Chandrakasan A, Sheng S, Brodersen RW. Low-power CMOS digital design. IEEE Journal of Solid-State Circuit, 1992, 27(4): 473-484.
    7 Rele S, Pande S, Onder S, Gupta R. Optimizing static power dissipation by functional units in superscalar processors. Horspool RN, Lecture Notes in Computer Science 2304. Berlin. Springer Heidelberg. 2002. 85-100.
    8 Chen JJ, Kuo CF. Energy-efficient scheduling for real-time systems on dynamic voltage scaling (DVS) platforms. In: Ceballos S, ed. 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications. Daegu. IEEE. 2007.28-38.
    9 Awan MA, Petters SM. Energy-aware partitioning of tasks onto a heterogeneous multi-core platform. In: Goddard S,ed. Real-Time and Embedded Technology and Applications Symposium. Philadelphia. IEEE. 2013. 205-214.
    10 Chen JJ, Thiele L. Energy-efficient scheduling on homogeneous multiprocessor platforms. In: Shin SY, ed. ACM Symposium on Applied Computing. New York. ACM. 2010. 542-549.
    11 Buttazzo G, Bertogna M, Yao G. Limited preemptive scheduling for real-time systems: a survey. IEEE Transactions on Industrial Informatics, 2013, 9(1): 3-15.
    12 Funaoka K, Kato S, Yamasaki N. Energy-efficient optimal real-time scheduling on multiprocessors. In: Lisa OC, ed. The 11th IEEE Symposium on Object Oriented Real-Time Distributed Computing. Orlando. IEEE. 2008. 23-30.
    13 Yang CY, Chen JJ, Kuo TW. An approximation algorithm for energy-efficient scheduling on a chip multiprocessor. Conference on Design, Automation, and Test in Europe (DATE). Munich. IEEE. 2005. 468-473.
    14 Seo E, Jeong J, Park S, Lee J. Energy efficient scheduling of real-time tasks on multicore processors. IEEE Trans. on Parallel and Distributed Systems, 2008, 19(11): 1540-1552.
    15 Pagani S, Chen JJ. Energy efficiency analysis for the single frequency approximation (SFA) scheme. ACM Trans. on Embedded Computing Systems, 2014, 13(5s): 158:1-25.
    16 Yu Y, Prasanna V. Power-aware resource allocation for independent tasks in heterogeneous real-time systems. In: Martin DC, ed. Ninth International Conference on Parallel and Distributed Systems. IEEE. 2002. 341-348.
    17 Luo J, Jha NK. Static and dynamic variable voltage scheduling algorithms for real-time heterogeneous distributed embedded systems. In: Sherlekar SD, ed. Proc. of the 2002 Asia and South Pacific Design Automation Conference. Bangalore. IEEE. 2002. 719-728.
    18 Chen JJ, Thiele L. Energy-efficient task partition for periodic real-time tasks on platforms with dual processing elements. In: Werner B, ed. 14th IEEE International Conference on Parallel and Distributed Systems. Melbourne. IEEE. 2008. 161-168.
    19 Yang CY, Chen JJ, Kuo TW, Thiele L. An approximation scheme for energy-efficient scheduling of real-time tasks in heterogeneous multiprocessor systems. In: Benini L, ed. Proc. of the Conference on Design, Automation and Test in Europe. Belgium. IEEE. 2009. 694-699.
    20 Chen JJ, Schranzhofer A, Thiele L. Energy minimization for periodic real-time tasks on heterogeneous processing units. In: Alessandro M, ed. IEEE International Symposium on Parallel & Distributed Processing. Rome. IEEE. 2009. 1-12.
    21 Awan MA, Petters SM. Enhanced race-to-halt: A leakage-aware energy management approach for dynamic priority systems. In: Werner B, ed. 23rd Euromicro Conference on Real-Time Systems. Porto. IEEE. 2011. 92-101.
    22 Xu R, Zhu D, Melhem R, Mossé D. Energy-efficient policies for embedded clusters. In: Frenger P, ed. ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems, New York. ACM. 2005. 1-10.
    23 Langen PJD, Juurlink BHH.Leakage-aware multiprocessor scheduling for low power. In: Prasanna VK, ed. Parallel and Distributed Processing Symposium. Rhodes Island. IEEE, 2006. 80-87.
    24 Huang H, Xia F, Wang J, Lei S, Wu G. Leakage-aware reall??湡???潮搠摦慯牲搠?卥??敯摤??删敲慥污?吭楴浩敭?愠湴摡??浳戠敯摮搠敭摵?呴敩捣桯湲潥氠潰杲祯?慥湳摳??灳瀮氠楉据愺琠楓潴湯獪?卥祮浯灶潩獣椠畉洬??偤栮椠汆慩摦整汨瀠桉楮慴?????????ぬㄠ????????????扮爠????婴楩浥浲攠牯浦愠湃湯?????牲椠湓杣浩慥湮湣?传??剤漠獔敥湣獨瑮楯敬汯?坹???湨慡汮祧獣楨獵?漮映?浅畅汅琮椠搲漰洱愰椮渠?猵挭改渱愮爼楢潲猾′昵漠牗?潮灧琠楙洬椠穓敡摫?摥祮湡愠浍椮挠?灣潨睥敤牵?浩慮湧愠杦敩浸敥湤琭?獲瑩牯慲瑩整杹椠整獡???渠??側牨攠慰獲????整摩???整獨楲来湳???畤琮漠浉慮琺椠潔湩???呯敲獴瑨?楆湍??略牤漮瀠敔??漠渶晴敨爠敉湅捅故????砮栠楃扯楮瑦楥潲湥???爠敯獮搠敒湥????????至は????????????ems and Applications, Hong Kong. IEEE. 1999. 328-335.
    26 Baruah S. The limited-preemption uniprocessor scheduling of sporadic task systems. In: Tovar E, ed. The 17th Euromicro Conf. on Real-Time Systems (ECRTS'05), Balearic Islands. IEEE. 2005. 137-144.
    27 Burns A. Preemptive priority based scheduling: An appropriate engineering approach. Advances in Real-Time Systems, London. Prentice Hall. 1994. 225-248.
    28 Lee J, Shin KG. Controlling preemption for better schedulability in multi-core systems. In: Kato S, ed. Real-Time Systems Symposium, San Juan. IEEE, 2012. 29-38.
    29 Bambagini M, Bertogna M, Marinoni M, Buttazzo GC. An energy——aware algorithm exploiting limited preemptive scheduling under fixed priorities. In: Eduardo T, ed. The 8th IEEE International Symposium on Industrial Embedded Systems. Porto. IEEE. 2013. 3-12.
    30 Kato S, Ishikawa Y. Gang EDF scheduling of parallel task systems. In: Baker TP, ed. The 30th IEEE Real-Time Systems Symposium. Washington. IEEE. 2009. 459-468.
    31 Collette S, Cucu L, Goossens J. Integrating job parallelism in real-time scheduling theory. Information Processing Letters, 2008, 106: 180-187.
    32 Becehi M, Crowley P. Dynamic thread assignment on heterogeneous multiprocessor architectures. In: Alderighi M, ed, eds. The 3rd Conf on Computing Frontiers. New York. ACM. 2006. 29-40.
    33 Baruah S, Bonifaci V, Marchetti-Spaccamela A, Stougie L, In: Wiese A. A generalized parallel task model for recurrent real-time processes. In: Kato S, ed. Real-Time Systems Symposium. San Juan. IEEE. 2012. 63-72.
    34 Damavandpeyma M, Stuijk S, Basten T, Geilen M, Corporaal H. Throughput-constrained DVFS for scenario-Aware dataflow graphs.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

张冬松,赵志峰,林志辉,王珏,吴飞.基于多核处理器系统多维限制的节能实时调度.计算机系统应用,2015,24(10):204-211

Copy
Share
Article Metrics
  • Abstract:1512
  • PDF: 3157
  • HTML: 0
  • Cited by: 0
History
  • Received:January 28,2015
  • Revised:March 25,2015
  • Online: October 17,2015
Article QR Code
You are the first990610Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063