Facial Expression Recognition Method Based on One-Against-One Extreme Learning Machine
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    By using a vote of one-against-one Support Vector Machine advantages of high classification algorithm accuracy, an improved expression recognition method was proposed in order to modify the Extreme Learning Machine's disadvantage of bad stability and poor classification accuracy. The method combines one-against-one classification algorithm with Extreme Learning Machine, which are consist of a new algorithm-OAO-ELM. First, the algorithm uses the ELM process classification as weak classifier when training sample by one-against-one. Then, these weak classifiers are combined into the finally strong classification. Prediction the results of classification, by votes to the class. Gabor facial expressional features, since the high-dimensional Gabor features are redundant; The dimensional principal component analysis is used to select these features. Experimental results based on the JAFFE database show that it obtains higher accuracy and better stability.

    Reference
    Related
    Cited by
Get Citation

张小庆,于威威.基于一对一极限学习机的人脸表情识别方法.计算机系统应用,2015,24(10):186-190

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 20,2015
  • Revised:March 18,2015
  • Adopted:
  • Online: October 17,2015
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063