Resource Scheduling Based on Particle Swarm and Differential Genetic Algorithm in Cloud Computing
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Resource scheduling in cloud computing has long been the focus of research. In this paper, particle swarm algorithm is introduced into the cloud computing and aiming at the shortcomings of this algorithm like fast local convergence and being easy to fall into local optimal value. Two improvements are made in this paper: one is to introduce differential genetic algorithm into particle swarm algorithm while finding the optimal solution, which can not only give play to particle swarm's advantage of quick global searching speed, but also give play to differential genetic algorithm's advantage of efficient local researching while combining the advantages of these two algorithms and making up for the deficiency of particle swarm algorithm. Another is to introduce penalty function so as to avoid particles moving towards void space and save costs of moving. Cloudsim platform shows that algorithm in this paper can effectively meet resource scheduling in cloud computing while having great improvement in reducing time of completing the task as well as consumption of costs so as to provide a reference for resource scheduling in cloud computing.

    Reference
    Related
    Cited by
Get Citation

陈海涛.云计算中的基于粒子群算法和差分遗传算法的资源调度.计算机系统应用,2015,24(10):136-141

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 10,2015
  • Revised:April 17,2015
  • Adopted:
  • Online: October 17,2015
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063