Improved Weighted Naive Bayes Classification Algorithm Based on Attribute Selection
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Naive Bayes Classification is simple and effective, but its strong attribute independency assumption limits its application scope. Concerning this problem, an improved WNBC algorithm is proposed based on attribute selection. This algorithm combines CFS algorithm with WNBC algorithm, it firstly uses CFS algorithm to get an attribute subset so that the simplified attribute subset can meet conditional independency; meanwhile, the algorithm's weighting coefficient is designed on that different attribute values have different influences on the classification result. Finally, it uses ASWNBC algorithm to classify datasets. The experimental results show that the proposed algorithm improves the classification accuracy with lower time consumption, therefore heightens the performance of NBC algorithm.

    Reference
    Related
    Cited by
Get Citation

王行甫,杜婷.基于属性选择的改进加权朴素贝叶斯分类算法.计算机系统应用,2015,24(8):149-154

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 02,2014
  • Revised:January 26,2015
  • Adopted:
  • Online: September 03,2015
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063