RBLDA Model and Interaction Relation Algorithm for User Tags Recommendation in Microblog
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the development of internet technology, the personalized tag recommendation system plays an important role in information or resources filtering. In Sina microblog website, an user can freely tag himself to indicate his interests. Meanwhile, users can also search other users who have the similar interests through tags. For the issue that there are no tags or few tags for the most users in Sina microblog website, an algorithm based on RBLDA model and users' interaction graph for tags recommendation is proposed in this paper. The algorithm utilizes the RBLDA model to produce the intial list of tags, and combines with users' interaction graph generated from actions of interaction between users to predict the final tags. The experimental results carried on some real data sets show that the proposed method performs better than traditional tag recommendation algorithms in comparison.

    Reference
    Related
    Cited by
Get Citation

余勇,郭躬德.基于RBLDA模型和交互关系的微博标签推荐算法.计算机系统应用,2015,24(8):141-148

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 01,2014
  • Revised:January 12,2015
  • Adopted:
  • Online: September 03,2015
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063