Application of Improved Apriori Algorithm in Social Network Friends Recommendation
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Considering the limits that the Apriori algorithm produces numerous candidate itemsets during the self-joins of frequent items and scans database time after time, this paper proposed an improved algorithm. This algorithm maps the database to a boolean matrix, and then, deletes those meaningless items and records after the AND operation between matrix columns. This will greatly reduce the time and space complexities. Applying to the friend recommendation algorithm in social networks, this improved algorithm regards the interested users and information as records, takes the concerned users as deal items, builds a transaction database, computes frequent 2-item sets and recommends Top-N users ranked by supporting number as friends. The experiment proves the improved algorithm has higher precision and recall in friend recommendation algorithms of social networks.

    Reference
    Related
    Cited by
Get Citation

江三锋,余建坤.改进Apriori算法在社交网络好友推荐中的应用.计算机系统应用,2015,24(7):200-204

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 29,2014
  • Revised:February 11,2015
  • Adopted:
  • Online: July 17,2015
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063