Improvement and Implementation of SVM and Integrated Learning Algorithm
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The main drawback of support vector machine (SVM) algorithm is that it needs large memory and long training time while handling large training data set. In order to speed up the training and improve classification accuracy, this paper proposes a binary classification model, which fuses the Bagging, SVM and Adaboost algorithm. And a kind of denoising algorithm is proposed. Contrast SVM, the SVM-Adaboost and classification model proposed in this paper by experiment. With the expanding of training data, this classification model has improved training speed significantly under the premise of improving accuracy.

    Reference
    Related
    Cited by
Get Citation

魏仕轩,王未央. SVM和集成学习算法的改进和实现.计算机系统应用,2015,24(7):117-121

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 24,2014
  • Revised:March 12,2015
  • Adopted:
  • Online: July 17,2015
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063