K-Prototypes Algorithm for Clustering of Data Mixed with Numeric and Categorical Attributes
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Data objects with mixed numeric and categorical attributes are commonly encountered in real world. The k-prototypes algorithm is one of the principals for clustering this type of data objects. An improved k-prototypes algorithm is proposed to cluster mixed data in this paper. In our method, the concept of the distribution centroid is introduced for representing the prototype of categorical attributes in a cluster. Then we combine both mean with distribution centroid to represent the prototype of the cluster with mixed attributes, and thus propose a new measure to calculate the dissimilarity between data objects and prototypes of clusters. This measure takes into account the significance of different attributes towards the clustering process. Finally, we present out algorithm for clustering mixed data, and the performance of our method is demonstrated by a series of experiments on three real-world datasets in comparison with that of traditional clustering algorithm.

    Reference
    Related
    Cited by
Get Citation

余文利,余建军,方建文.混合属性数据k-prototypes聚类算法.计算机系统应用,2015,24(6):168-172

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 24,2014
  • Revised:November 14,2014
  • Adopted:
  • Online: June 09,2015
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063