Collaborative Filtering Recommendation Algorithm with Step Screening Neighbors
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To increase the accuracy of the neighbor screening in collaborative filtering algorithm, an improved system—collaborative filtering with step screening neighbors (SSN-CF)—is proposed in this paper. This algorithm firstly uses an improved Pearson method to compare the similarity between users. After arranging the data in descending order, the uses' characteristic value is calculated. Only those who surpass the threshold value are selected. Then the system gathers the users who graded the priority set to make up the final neighbor set. Finally the users' grades are estimated and recommendation is made. Experiments have shown that the algorithm can effectively get the most similar neighbor set of target uses. Meanwhile, it is tested that accuracy and stability is improved.

    Reference
    Related
    Cited by
Get Citation

朱毅萌,谢颖华.分步筛选邻居的协同过滤改进算法.计算机系统应用,2015,24(6):132-137

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 22,2014
  • Revised:December 17,2014
  • Adopted:
  • Online: June 09,2015
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063