Moving Vehicle Detection Based on Improved SUSAN Algorithm
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [8]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Focused on the intelligent vehicle safety issues under complex traffic environment, this paper presents an algorithm based on an improved SUSAN edge detection to extract the vehicle boundary characteristics. First, we introduce the principle of SUSAN edge detection operator, then present an improved SUSAN edge detection what treats crude extract of pixels and uses an adaptive threshold selection method for the candidate of edge detection to extract the edge. The experimental results indicate that the algorithm can identify in front of the vehicle in the complex image, have higher accuracy.

    Reference
    1 雷志勇,智能车辆视觉导航中障碍物的检测[学位论文].西安:西安工业大学,2013.
    2 王艳丽,沈文超,徐建闽.复杂行车环境下的前方车辆检测算法研究.电子设计工程,2013,21(18):149-151.
    3 钟顺红,何建农,基于自适应双阈值的SUSAN算法.计算机工程,2012,38(3):206-211.
    4 Smith SM. Brady JM. SUSAN-a new approach to low level image processing. Journal of Computer Vision, 1997,23(1): 45-78.
    5 马桂珍,段丽.一种改进的SUSAN边缘检测算法.现代电子技术,2007,(20):129-133.
    6 肖玲玲,赵秀鸟.一种基于数学形态学与改进的SUSAN算子边缘提取快速算法.微机与应用,2009:76-78.
    7 丁明跃,彭嘉雄.基于内点保留的二值图像细化算法.华中理工大学学报,1994,22(1):79-82.
    8 李劝男.灰度图像骨架的提取在物体检测中的应用[学位论文].武汉:华中科技大学,2009.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

杨艳爽,蒲宝明.基于改进SUSAN算法的移动车辆检测.计算机系统应用,2015,24(5):249-252

Copy
Share
Article Metrics
  • Abstract:1302
  • PDF: 2444
  • HTML: 0
  • Cited by: 0
History
  • Received:August 29,2014
  • Revised:November 14,2014
  • Online: May 15,2015
Article QR Code
You are the first990523Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063