Bearing Fault Diagnosis Based on CV-GA-SVM Approach
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [13]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to effectively extract the fault characteristic signal of bearing and accurate classification, this paper uses the method of introducing the cross validation of genetic algorithm and support vector machine in combination with wavelet packet transformation, to identify the fault bearing issued by the unstable characteristic signal and diagnosis.Firstly, the fault signals of instantaneous changes using wavelet packet transform time-frequency characteristics are extracted. Then, using cross validation of genetic algorithm and support vector machine classifiers are built detection, optimization and fault pattern recognition of parameters. Finally, through the experiment to verify the rationality. The experimental results show that this method has real-time, high accuracy and reliability for the detection and classification of the finite sample fault signal.

    Reference
    1 赵志宏,杨绍普.基于小波包变换与样本熵的滚动轴承故障诊断.振动测试与诊断,2012,32(4):640-644.
    2 李雅梅,陈明霞,杜晶.小波理论在滚动轴承故障诊断中的应用.计算机系统应用,2012,21(7):172-176.
    3 秦涵书,魏延,曾绍华,等.一种基于小生境遗传算法的SVM参数优化方法.重庆理工大学学报(自然科学),2011,25(12): 89-93.
    4 解洪胜,张虹,徐秀,等.基于复小波和支持向量机的纹理分类法.计算机应用研究,2008,25(5):1573-1575.
    5 Weston J, Watkins C. Multi-class Support Vector Machines. In: Verleysen M, ed. Proc. of ESANN99. Brussels. D Facto Press, 1999.
    6 吴景龙,杨淑霞,刘承水.基于遗传算法优化参数的支持向量机短期负荷预测方.中南大学学报,2009,40(1):180-184.
    7 Tang WH, Wu QH. Condition Monitoring and Assessment of power Transformers Using Computational Intelligence. New York: Springer Verlag Press, 2011: 95-104.
    8 李冬萍.基于混沌粒子群优化的SVM分类器研究.计算机仿真,2010,27(4):185-191.
    9 朱树先,张仁杰.支持向量机核函数选择的研究.科学技术与工程,2008, 8(16):4513-4517.
    10 李隽颖,楼晓俊.基于小生境遗传算法的分类优化方法.计算机应用研究,2012,29(5):1787-1790.
    11 杨正友,彭涛.基于振动信号分析和支持向量机的滚动轴承故障诊断.湖南工业大学学报,2009,23(1):96-99.
    12 崔挺,孙元章,徐箭,等.基于改进小生境遗传算法的电力系统无功优化.中国电机工程学报,2011,31(19):43-50.
    13 李雅梅,贺西.基于NGA-SVM的滚动轴承故障诊断方法. 计算机仿真,2014,31(2):396-400.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

郭琳,徐德军.基于CV-GA-SVM方法的轴承故障诊断.计算机系统应用,2015,24(5):215-219

Copy
Share
Article Metrics
  • Abstract:1361
  • PDF: 2452
  • HTML: 0
  • Cited by: 0
History
  • Received:September 17,2014
  • Revised:October 19,2014
  • Online: May 15,2015
Article QR Code
You are the first990465Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063