Application of Wavelet Neural Network in Educational Grid Downlink Traffic Prediction
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Accurate predicted the downlink traffic contributes to traffic load balancing and information security management in educational resources grid. Wavelet neural network is suitable for modeling and nonlinear prediction in grid downlink traffic which has the randomness and uncertainty characteristic. General wavelet neural network prediction model had some defects such as convergence slower, larger error and poor stability. In order to eliminate or improve the existing defects, a momentum was added in the scheme which was used to adjust the network weights and parameters based on gradient descent algorithm, meanwhile, an improved algorithm with random sample replacement mechanism in temporarily prediction results was proposed. Experimental results show that the proposed algorithm can reduce the convergence time in network training and improve the prediction accuracy and stability.

    Reference
    Related
    Cited by
Get Citation

邱树伟,李琰琰.小波神经网络在教育网格下行流量预测中的应用.计算机系统应用,2015,24(5):198-204

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 20,2014
  • Revised:December 01,2014
  • Adopted:
  • Online: May 15,2015
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063