User BehaviorCycle-Based Statistical Approach for Anomaly Detecting on Mobile Devices
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this paper, we present a distributed anomaly detection system for mobile devices. The proposed framework realizes a client-server architecture, the client continuously extracts various features of mobile device and transfers to the server, and the server's major task is to detect anomaly using state-of-art detection algorithms. According to the regularity of human daily activity and the periodic of using mobile device, we also propose a novel user behavior cycle based statistical approach, in which the abnormal is determined by the distance from the undetermined feature vector to the similar time segments' vectors of previous cycles. We use the Mahalanobis distance as distance metric since it is rarely affected by the correlate and value range of features. Evaluation results demonstrated that the proposed framework and novel anomaly detection algorithm could effectively improve the detection rate of malwares on mobile devices.

    Reference
    Related
    Cited by
Get Citation

吴志忠,周学海.基于用户行为周期的移动设备异常检测方法.计算机系统应用,2015,24(4):184-189

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 10,2014
  • Revised:September 15,2014
  • Adopted:
  • Online: April 24,2015
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063