Robust Adaptive Foreground Detection Algorithm Based on Parallel Framework
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Video surveillance data is increasing quickly, it's a challenge to separate out moving objects from a massive video data in the field of computer vision. The article designs and implements a Cloud-based distributed video processing framework, and proposes an improved adaptive foreground extraction algorithm based on gaussian mixture model(GMM). The method obtains the optimal parameters by adaptive learning gaussian distribution and online EM(Expectation Maximization) algorithm, and it fuses the improved algorithm to distributed video processing framework. The experiment shows that the method can not only greatly improve the efficient of video processing but also accurate extract foreground targets under complex environment , and it has good robustness.

    Reference
    Related
    Cited by
Get Citation

陈文竹,陈岳林,蔡晓东,华娜.基于并行框架的鲁棒自适应前景检测算法.计算机系统应用,2015,24(4):153-158

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 29,2014
  • Revised:September 23,2014
  • Adopted:
  • Online: April 24,2015
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063