Weight Solving Method in Hybrid Kernel Function
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to overcome the limitation of single kernel in Support Vector Machine(SVM) model, hybrid kernel is usually used in forecasting. However, the weight of functions in the hybrid kernel is hard to calculate. To solve this problem, we propose a new method based on feature-distance. This method firstly gets an optimization function based on SVM's geometric meaning and a principle, which is the feature-distance of the same kind should be minimized and the different should be maximized, and then analyzes the optimization function to work out the weight. Experimental results show that compared with the cross validation method and PSO algorithm, this method reduces the computing time nearly by 70% with the accuracy kept unchanged.

    Reference
    Related
    Cited by
Get Citation

王行甫,俞璐.混合核函数中权重求解方法.计算机系统应用,2015,24(4):129-133

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 16,2014
  • Revised:September 10,2014
  • Adopted:
  • Online: April 24,2015
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063