Customer Traffic Analysis and Forecast Based on User's Behavior Model
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [10]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to forecast the short-term customer flow in trading area under wireless access, through analyzing of customer shopping behaviors, this paper presents an identification scheme based on staying time and activeness to distinguish the staff and customers. We use the binary linear regression method to fit the data under confidence level of 95%, and analyze the influence of different parameters to predict. Experimental results show that the staying time and activeness are reasonable and effective to distinguish the identity information, when time threshold is 3 and activeness threshold is 2, the wavelet neural network prediction effect is best.

    Reference
    1 Lee S. Application of the Subset ARIMA Model for short-term freeway traffic volume forecasting. Transportation Research Record, 2009, 1678(35): 179-188.
    2 王钰.基于小波神经网络的中国能源需求预测模型.系统科学与数学,2009,29(11):1542-1551.
    3 Billings SA, Wei HL. A new class of wavelet network for nonlinear system identification. IEEE Trans. on Neural Networks, 2005, 16(4): 862-874.
    4 冯再勇.小波神经网络与BP网络的比较研究及应用[学位论文].成都:成都理工大学,2007.
    5 张坤,郁湧,李彤.小波神经网络在黄金价格预测中的应用.计算机工程与应用,2010,46(27):224-227.
    6 任文君.基于网络用户行为分析的问题研究[学位论文].北京:北京邮电大学,2012.
    7 何跃,陈大勇,腾格尔.基于Web数据挖掘的用户浏览兴趣路径研究.计算机工程与应用,2012,48(7):106-108.
    8 王晓聪.基于位置的社交网络用户签到行为研究[学位论文].大连:大连海事大学,2012.
    9 袁树寒,陈维斌,傅顺开.位置服务社交网络用户行为相似性研究.计算机应用,2012,32(2):322-325.
    10 余国强.基于小波神经网络的短时交通流预测算法的研究[学位论文].广州:华南理工大学,2012.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

程求江,彭艳兵.基于用户行为模型的客流量分析与预测.计算机系统应用,2015,24(3):275-279

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 10,2014
  • Revised:August 18,2014
  • Online: March 04,2015
Article QR Code
You are the first991251Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063