HAMA-Based Semi-Supervised Hashing Algorithm
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the massive data retrieval applications, hashing-based approximate nearest(ANN) search has become popular due to its computational and memory efficiency for online search. Semi-supervised hashing (SSH) framework that minimizes empirical error over the labeled set and an information theoretic regularizer over both labeled and unlabeled sets. But the training of hashing function of this framework is so slow due to the large-scale complex training process. HAMA is a Hadoop top-level parallel framework based on Bulk Synchronous Parallel mode (BSP). In this paper, we analyze calculation of adjusted covariance matrix in the training process of SSH, split it into two parts: unsupervised data variance part and supervised pairwise labeled data part, and explore its parallelization. And experiments show the performance and scalability over general commercial hardware and network environment.

    Reference
    Related
    Cited by
Get Citation

刘扬,朱明.基于HAMA的半监督哈希方法.计算机系统应用,2014,23(11):169-174

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 23,2014
  • Revised:May 04,2014
  • Adopted:
  • Online: November 20,2014
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063