Data Mining of Protective Clothing Shrinkage During Flash Fire
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the application of the thermal manikin and fire manikin, mass data are produced during the experiment research in the clothing engineering area. The advantages of the larger samples can not be revealed using the conventional analysis method. Thus, in the paper, by using the Clementine software, data mining method is used to explore the data produced by flash fire experiment. The decision tree method and the neural net method are used to determine the key influence factors of the thermal shrinkage, which are then used in Kohonen cluster to divide protective clothing into different parts. Research shows that heat flux is the most important factor to the degree of shrinkage and the arm and leg are the key parts to be protected. It suggested that data mining is an effective tool to explore the character and function of the protective clothing.

    Reference
    Related
    Cited by
Get Citation

翟丽娜,李俊.闪火条件下防火服装热收缩形变的数据挖掘.计算机系统应用,2014,23(10):132-137

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 11,2014
  • Revised:April 08,2014
  • Adopted:
  • Online: October 17,2014
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063