New Approach to Hybrid Recommendation Based on Incremental Data
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Due to the large amount of training data and the high complexity of its recommend algorithm, the updating cycle of recommendation system tend to be long. However, the data on the system is growing all the time, and a lot of data is produced during the cycle, which is useful for the recommendation of next moment, and recommendation system can't use these data in time. In order to use these data in time to improve the quality of recommendation system, a new approach to hybrid recommendation based on incremental data was proposed. The approach mainly divided recommendation into offline and online module, the offline module is used to produce the personalized recommendation list, while the online recommendation module maintains a list of popular trend momentum based on real-time and incremental data. Then, combining with the results of the two modules, based on which give users anonymous or personalized recommendation. Experiments show that the approach is simple, effective, feasible, and can improve the performance of recommendation system better.

    Reference
    Related
    Cited by
Get Citation

陈洪涛,肖如良,林丽玉,颜杰敏,蔡声镇.一种数据递增式的混合推荐方法.计算机系统应用,2014,23(10):119-124

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 24,2014
  • Revised:March 17,2014
  • Adopted:
  • Online: October 17,2014
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063