Method of Identifying Bridged Electrodes Based on Mutual Information Statistics
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Electrode bridging is a common but easily ignored EEG artifact source. Based on the distinctive statistical characteristics of mutual information, a novel algorithm to automatically detect these bridges was developed and further applied to four EEG data sets acquired from different subjects. The applications identified four, four, three and zero pairs of bridged electrodes in these four data sets, respectively. No influencing factors were returned by One-way robustness analyses across different recording tasks and/or pre-processing procedures. And further comparison experiments performed on simulated data indicated that it outperformed the electrical distance method. All these findings suggest that the novel method is able to screen electrode bridges in a satisfying manner, making it of great significance in providing an indication to timely remedy the contaminated EEG data so as to avoid distortions to the resultant EEG topographies.

    Reference
    Related
    Cited by
Get Citation

王冬翠,陈真诚,邓阳光,巫放明,张阳德.基于互信息统计特性的桥接电极辨出方法.计算机系统应用,2014,23(9):144-148

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 22,2014
  • Revised:March 24,2014
  • Adopted:
  • Online: September 18,2014
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063