Color Disease Spot Edge Detection of Crop Based on Multifeature Selection and Support Vector Machine
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [11]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to correctly extract the lesion of crop disease images, proposes a method to detect color edge of crop disease based on support vector machines and multi feature selection. The method uses (2d + 1) * (2d + 1) as the size of the window through the image. It also is used on the image luminance and chrominance channels calculate variance, mean value difference, maximum gradient, characteristics of space position and mean color difference. In order to accurately identify the edge of disease spot, the characteristics of vector-valued input support vector machine is employed. To improve the efficiency of disease spot of edge detection, a method is proposed in the traversal process, if the eigenvalues are smaller than the threshold, skip d row, d column to traverse. The experimental shows that the method has better than the traditional edge detection operator disease spot edge recognition ability.

    Reference
    1 赵进辉,罗锡文,周志艳.基于颜色与形状特征的甘蔗病害图 像分割方法.农业机械学报,2008,39(9).
    2 毛罕平,张艳诚,胡波.基于模糊C 均值聚类的作物病害叶片 图像分割方法研究.农业工程学报,2008,24(9).
    3 张柏毅,朱景福,刘勇.基于模糊C-均值聚类的作物叶部病斑 图像分割.智能计算机与应用,2011,3(10).
    4 任玉刚,张建,李淼,等.基于分水岭算法的作物病害叶片图像 分割方法.计算机应用,2012,32(3):752-755.
    5 祁广云,马晓丹,关海鸥.采用改进的遗传算法提取大豆叶片 病斑图像.农业工程学报,2009,25(5).
    6 Rough Z. Sets and Intelligent Data Analysis.Information Sciences, 2002,147(1-4):1-12.
    7 徐海祥,喻莉.基于支持向量机的磁共振脑组织图像分割.中 国图象图形学报,2005,10(10):1275-1280.
    8 李冠林,马占鸿,等.基于K-means 硬聚类算法的葡萄病害彩 色图像分割方法.农业工程学报,2010,26(2):32-36.
    9 Mazzoni D, Garay MJ. An operational MISR pixel classifier using support vector machines. Remte sensing of Envioronment, 2007,107(1):149-158.
    10 Burges CJC. A totorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998,2 (2):121-169.
    11 Gunn SR. Support vector machines for classification and regression[Technical Report]. Southampton: University of Southampton, 1998: 1-28. l2 Canargo A, Smith JS. An image-processing based algorithm to automatically identify plant disease visual symptoms. Biosystems Engineering, 2009,102(1): 9-21. l3 武兵.CIELAB 均匀色空间在印刷中的应用.印刷质量与标 准化,2003,(5):14-17.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

濮永仙.基于支持向量机与多特征选择的农作物彩色病斑边缘检测.计算机系统应用,2014,23(9):118-123

Copy
Share
Article Metrics
  • Abstract:1337
  • PDF: 2489
  • HTML: 0
  • Cited by: 0
History
  • Received:January 09,2014
  • Revised:March 10,2014
  • Online: September 18,2014
Article QR Code
You are the first1095095Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063