Bayesian Networks Classifier Using Approximation
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Bayesian networks are widely used in many fields. As a classifier, it is an effective classification method. Bayesian network classifier is one of the most challenging problems, which makes the Bayesian network classifier subject to many limitations in the application. Through the pairs of Bayesian network classifier algorithms' approximate treatment, it can effectively reduce the amount of calculation, and get satisfactory classification accuracy. This paper analyzes a way to change discriminative score function to generative score function by approximation method. This way is applied in Bayesian network classification algorithm. Finally, this paper uses the stability of new algorithm, proposes a new classifier through integration called Bagging-aCLL. It uses ensemble to improve the accuracy rate of the algorithm. The experiment test shows the classification accuracy rate of the algorithm have a good performance.

    Reference
    Related
    Cited by
Get Citation

郝宇晨.贝叶斯网络分类器近似学习算法.计算机系统应用,2014,23(8):189-193

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 24,2013
  • Revised:January 20,2014
  • Adopted:
  • Online: August 18,2014
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063