Microblog Hot Topics Discovery Method Based on Probabilistic Topic Model
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Microblog has the characteristic of short length, complex structure and words deformation. Therefore, traditional vector space model (VSM) and latent semantic analysis (LSA) are not suitable for modeling them. In this paper, a two stage clustering algorithm based on probabilistic latent semantic analysis (pLSA) and Kmeans clustering (Kmeans) is proposed. Besides, this paper also presents the definition of popularity and mechanism of sorting the topics. Experiments show that our method can effectively cluster topics and be applied to microblog hot topic detection.

    Reference
    Related
    Cited by
Get Citation

米文丽,孙曰昕.利用概率主题模型的微博热点话题发现方法.计算机系统应用,2014,23(8):163-167

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 18,2013
  • Revised:January 14,2014
  • Adopted:
  • Online: August 18,2014
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063