Research and Application of Fuzzy Least Square Support Vector Machine Regression
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The traditional SVM is more sensitive to the noise and isolated points in training sample, and have lower modeling accuracy. In this paper, fuzzy set theory is introduced to least squares support vector regression, and then to establish a data domain description fuzzy least squares support vector machine regression. This method will sample mapped into a high dimensional space, and search a minimum enclosing sphere in high dimensional space. Meanwhile, according to the distance from sample to the center of the sphere, the size of fuzzy membership can be determined. A simulation experiment is provided to demonstrate that this algorithm can improve the accuracy of support vector machine regression. This model is applied to predict the concentration of glutamic acid bacteria fermentation process. Results we obtain in simulation show the effectiveness of the proposed approach.

    Reference
    Related
    Cited by
Get Citation

孙政,潘丰.模糊最小二乘支持向量机回归研究及应用.计算机系统应用,2014,23(8):105-108

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 04,2013
  • Revised:December 30,2013
  • Adopted:
  • Online: August 18,2014
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063