Drowsiness Determining Algorithm Based on Eye Features
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [24]
  • |
  • Related [20]
  • |
  • Cited by [0]
  • | |
  • Comments
    Abstract:

    PERCLOS value has been used widely in drowsiness detection because of its accuracy and non-contact nature, but in practice, only one PERCLOS criterion is commonly used. In this paper, a method is proposed using continuous eye closure time and PERCLOS value simultaneously for determining the drowsiness degree. Firstly, the algorithm uses Haar-like classifier and Adaboost algorithm for face detection and localization. Then the searching area of the human eyes is narrowed based on human facial structure characteristics. Then the human eyes are positioned using Adaboost algorithm, which can avoid the influence of the eyebrows. Finally image processing methods including image morphology are used to get the vertical height of the human eye, i.e., the distance between the upper and lower eyelids, which can indicate whether the eyes are closing or not. In drowsiness prediction phase, different PERCLOS criteria are used in different time slot. With 10 frames/s testing video speed, the accuracy of the algorithm can reach 86.14%. The method presented in this paper can meet the real-time requirements and improve the accuracy of driver drowsiness degree predictions.

    Reference
    1 程如中,赵等.基于Adaboost方法的车载嵌入式疲劳驾驶预警系统.北京大学学报(自然科学版),2012,48(5):719-723.
    2 Takahashi I, Yokoyama K. Development of a feedback stimulation for drowsy driver using heartbeat rhythms. Engineering in Medicine and Biology Society. Boston. 2011. 4153–4158.
    3 毛喆.机动车疲劳驾驶行为识别方法研究[学位论文].武汉: 武汉理工大学,2009.
    4 刘佳兴,王炜.基于多参数融合的疲劳驾驶监测及预警系统.计算机仿真,2013,30(5):171-173.
    5 Kim Y, Youmin K, Hahn M. Detecting driver fatigue based on the driver's response pattern and the front view environment of an automobile. Second International Symposium. Osaka. 2008. 237–240.
    6 石磊.基于Android智能移动终端的汽车疲劳驾驶预警系统的研究与实现[学位论文].南京:南京邮电大学,2013.
    7 刘莉.基于眼部信息的疲劳驾驶检测方法研究.长沙:湖南大学,2011.
    8 Ronald R. Knipling WWW. Vehicle-based drowsy driver detection: Current status and future prospects. IVHS America Fourth Annual Meeting, Atlanta, GA, April 17-20, 1994.
    9 郭永彩,李文涛,高潮.基于PERCLOS的驾驶员疲劳检测算法.计算机系统应用,2009,18(8):54-57.
    10 郑培.机动车驾驶员驾驶疲劳测评方法的研究[学位论文].北京:中国农业大学,2002.
    11 李贞.基于计算机视觉的驾驶员安全驾驶状态监控系统研究[学位论文].西安:西北工业大学,2007.
    12 Hamelinp. Lorry driverps time habits in work and their involvement intraffic accidents. Ergonomics, 1987, 30(9): 1323-1333.
    13 Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. Computer Vision and Pattern Recognition, 2001.
    14 Lienhart R, Maydt J. An extended set of Haar-like features for rapid object detection. Image Processing. USA. 2002. 900-903.
    15 赵楠.基于Adaboost算法的人脸检测[学位论文].北京:北京大学,2005.
    16 吴锦倩.基于人眼特征的疲劳检测技术的研究与实现[学位论文].沈阳:东北大学,2012.
    17 Viola P, Jones M. Robust real-time face detection. International Journal of Computer Vision, 2004, 57(2): 137-154.
    18 余龙华,王宏,钟洪声.人眼检测及瞳孔定位.计算机工程与应用,2013,49(3):186-189.
    19 周锋华,孟宪元,梅顺良,任雁军.司机疲劳驾驶实时检测系统设计.测控技术,2013,32(1):38-40.
    20 崔坚.基于眼部识别的驾驶员疲劳检测方法研究[学位论文].大连:大连海事大学,2013.
    21 李都厚,刘群袁伟,刘浩学.疲劳驾驶与交通事故关系.交通运输工程学报,2010,10(2):104-108.
    22 苑玮琦,滕红艳.眼睛疲劳程度判定方法研究.计算机工程与应用,2012.
    23 刘洪榛.基于机器视觉的疲劳驾驶检测算法研究[学位论文].广州:华南理工大学,2012.
    24 Horne JA, Reyner LA. Driver sleepiness. Journal of Sleep Research, 1995, 4(S2): 23-29.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

姜兆普,许勇,赵检群.基于眼部特征的疲劳检测算法.计算机系统应用,2014,23(8):90-96

Copy
Share
Article Metrics
  • Abstract:1777
  • PDF: 6040
  • HTML: 0
  • Cited by: 0
History
  • Received:December 03,2013
  • Revised:December 23,2013
  • Online: August 18,2014
Article QR Code
You are the first990476Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063