Research of Collaborative Filtering Recommendation Algorithm on Douban Network Data
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This paper improved the collaborative filtering recommendation algorithm by considering the nearest neighbor and directed similarity in Douban network data. Then, the improved algorithms were used to recommend books, movies and music for Douban users. The recommended results are carefully compared and analyzed in terms of three well-know indicators including accuracy, diversity and novelty. It is shown that the nearest neighbor algorithm has much lower computational complexity and the directed similarity algorithm obtains higher accuracy, while all these three algorithms have similar diversity and novelty of the recommended results, by comparing with the traditional collaborative filtering recommendation algorithm.

    Reference
    Related
    Cited by
Get Citation

马晓迪,宣琦,张哲,傅晨波,董辉.协同过滤推荐算法在豆瓣网络数据上的研究.计算机系统应用,2014,23(8):18-24

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 12,2013
  • Revised:January 17,2014
  • Adopted:
  • Online: August 18,2014
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063