Improved Particle Swarm Optimization Algorithm Based on Game Model
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Particle Swarm algorithm as a new evolutionary optimization method can greatly reduce the computational burden of complex, large-scale optimization problems. This article is based on game theory. On the basis of the particle swarm it proposeda non-cooperative game model based on particle swarm optimization algorithm, it wses a game sequence repeated game model. And in repeated games, each game all hope to produce maximum benefits. Nash equilibrium of the corresponding game process. Function through multiple benchmarks, comparing with the performance of the algorithm experimental results show that the algorithm is feasible and effective. The study has important theoretical significance and practical significance onexpand swarm intelligence algorithm.

    Reference
    Related
    Cited by
Get Citation

张睿哲,杨照峰.基于博弈模型的合作式粒子群优化算法.计算机系统应用,2014,23(6):170-174

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 28,2013
  • Revised:December 09,2013
  • Adopted:
  • Online: June 20,2014
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063