Frequent Itemsets Mining Optimization Methods Based on Aproiri Algorithm
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To reduce the number of database scanning and reduce the burden of memory further, also to improve the efficiency of mining frequent itemsets better, an Apriori-based optimization algorithm (M-Apriori) is proposed. The method stores frequent itemsets state by constructing the frequent state matrix and store the relationship between the transaction and itemsets by constructing the Boolean matrix. The algorithm scans the database only once and generates the initial frequent state matrix and the Boolean matrix during the initialization phase. On this basis, all frequent itemsets can be found directly without scanning the database repeatedly. Experiments show that M-Apriori algorithm has better performance and efficiency compared with the Apriori algorithm.

    Reference
    Related
    Cited by
Get Citation

吴学雁,莫赞.基于Aproiri算法的频繁项集挖掘优化方法.计算机系统应用,2014,23(6):124-129

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 05,2013
  • Revised:December 13,2013
  • Adopted:
  • Online: June 20,2014
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063