Music Classification Method Based on Entropy and Support Vector Machine
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Research on music classification has been processing years, but the performance of each method is not very well. This paper proposes a new method based on entropy and support vector machine for music classification. It uses bank of filters to decompose the music clip into different channels. Then the filters turns it into spectrum through discrete Fourier transform and compute the information entropy and uses support vector machine training and testing on a dataset containing four categories of music. The experiment compares three different kinds of filters, among which the Bark filter achieves an accuracy of 80%. The result shows that the proposed feature vector is better than MFCC.

    Reference
    Related
    Cited by
Get Citation

高林杰,张明.基于熵和支持向量机的音乐分类方法.计算机系统应用,2014,23(5):83-88

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 08,2013
  • Revised:October 28,2013
  • Adopted:
  • Online: May 29,2014
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063