Application of KAZE Algorithm in Human Face Image Matching
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The face images matching algorithm based on KAZE is to do nonlinear diffusion filtering by the additive operator splitting algorithm. In this way, the problem of blurred boundaries and detail missing can be solved. A stable nonlinear scale space is constructed by using arbitrary step to search the Hessian local maximum value point after different scales normalizing to detect feature points. By using M-SURE to describe the feature points, the feature vectors are constructed. The KAZE and SIFT feature are used to do face images matching under VS2010 and Opencv. By changing the blur level, angle of rotation, scale, change of brightness, a further simulation experiment can be conducted aiming at KAZE, SIFT, SURF in Matlab. The research result proves that the KAZE has better performance even if under the condition of Gaussian Blur, angle rotating, scale transformation and intensity roughness.

    Reference
    Related
    Cited by
Get Citation

衷伟岚,周力,袁臻.一种KAZE算法在人脸图像匹配中的应用.计算机系统应用,2014,23(4):144-148

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 31,2013
  • Revised:October 04,2013
  • Adopted:
  • Online: April 25,2014
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063