Application of Quantum Genetic Algorithm in Image Sharpening
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [18]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Image smoothing will lead to boundaries blurred, so image must be sharpen the edges of the image becomes clear. Traditional way of sharpen picture quantity has many problems. Tubbs used Beta function B (α, β) to sharpen picture, but how to determine the Beta parameters is still a complex issue. This paper describes the use of quantum genetic algorithm for nonlinear transformation parameters α and β, which adaptive to achieve gray-scale image enhancement. Finally, through simulation experiments verify the effectiveness of genetic algorithms to sharpen image.

    Reference
    1 韦芙芽,刘洪武,付春林.基于量子粒子群优化算法的光纤光栅参数重构.中国激光,2011,16(2):56-71.
    2 黄力明,徐莹,于瑞琴.改进的量子遗传算法及应用.计算机工程与设计,2009,21(8):16-21.
    3 朱筱蓉,张兴华.基于改进量子遗传算法的连续函数优化研究.计算机工程与设计,2007,8(21):147-152.
    4 封安辉,苏宏升.一种改进的量子遗传算法及其应用.计算机工程,2011,13(5):212-218.
    5 宣兆新,陆金桂,石云,吴慧.基于改进的遗传算法的图像恢复.计算机应用与软件,2010(3):32-36.
    6 许少华,许辰,郝兴,王颖.一种改进的双链量子遗传算法及其应用.计算机应用研究,2010,7(6):44-49.
    7 朱筱蓉,张兴华.基于改进量子遗传算法的连续函数优化研究.计算机工程与设计,2007,13(21):192-197.
    8 黄沙日娜,赵国亮.模糊量子遗传算法及其应用.计算机工程与应用,2011,21(5):103-107.
    9 Kouda N, Matsui N, Nishimura H. Image compression by layered quantum neural networks. Neural Processing Letters, 2002, 16(1): 213-219.
    10 Yang J, Li B, Zhuang Z. Research of quantum genetic algorith and its application in blind source separation. Journal of Electronics(China), 2003, 20(1): 149-155.
    11 Benioff P. Quantum mechanical hamiltonian models of turing machines. Journal of Statistical Physics, 1982, 29(3): 71-78.
    12 Benioff PA. Quantum mechanical Hamiltonian models of discrete processes that erase their own histories. International Journal of Theoretical Physics, 1982, 21(3): 22-30.
    13 Feynman RP. Simulating physics with computers. International Journal of Theoretical Physics, 1982, 21(6): 27-35.
    14 Kačur J, Mikula K. Slow and fast diffusion effects in image processing. Computing and Visualization in Science, 2001, 3(4): 92-101.
    15 Zhou J, Gan Q, Krzyżak A, Suen CY. Recognition of handwritten numerals by quantum neural network with fuzzy features. International Journal on Document Analysis and Recognition, 1999, 2(1): 137-142.
    16 Han KH, Kim JH. Genetic quantum algorithm and its application to combinatorial optimization problems. Proc. of IEEE Conference on Evolutionary Computation, 2000, 9(14): 162-168.
    17 Han KH, Park KH, Lee CH, et al. Parallel quantum-inspired genetic algorithm for combinatorial optimization problems. Proc. of IEEE International Conference on Evolutionary Computation, 2001, 14(7): 152-160.
    18 Han KH, Kim JH. Genetic quantum algorithm and its application to combinatorial optimization problems. Proc. of IEEE Conference on Evolutionary Computation, 2000, 8(15): 133-140.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李锋,莫乐群.量子遗传算法在图像锐化中的应用.计算机系统应用,2014,23(2):133-136

Copy
Share
Article Metrics
  • Abstract:1758
  • PDF: 3131
  • HTML: 0
  • Cited by: 0
History
  • Received:July 08,2013
  • Revised:September 04,2013
  • Online: January 27,2014
Article QR Code
You are the first992400Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063