Ant Colony Optimization Based on Self-Adaption Threshold for Path Planning
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to overcome the traditional ant colony algorithm easy to drop into local optimum, and improve the environmental adaptability and convergence speed of the path planning algorithm, an improved ant colony algorithm based on self-adaption threshold has been proposed in this paper. In the early stages of the optimization process, it uses self-adaption threshold to intervene the optimization process to avoid it dropping into local optimum. With the increase of the number of iterations, the threshold continues the impact on the optimization process, until the optimization process is guided by pheromone and heuristic information completely. The simulation experiments demonstrate the feasibility and effectiveness of the optimization algorithm. Compared with existing ant colony algorithms, the proposed algorithm can plan an optimal path quickly in different environments with satisfactory convergence speed and environment adaptability.

    Reference
    Related
    Cited by
Get Citation

赖智铭,郭躬德.基于自适应阈值蚁群算法的路径规划算法.计算机系统应用,2014,23(2):113-118,59

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 28,2013
  • Revised:July 26,2013
  • Adopted:
  • Online: January 27,2014
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063