Logistics Demand Forecasting Based on Least Support Vector Machine Optimized by Ant Colony Optimization Algorithm
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [11]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    In order to improve the forecasting accuracy of logistics demand, this paper puts forward a logistics demand forecasting model based on least support vector machines optimized by ant colony optimization algorithm (ACO-LSSVM). Firstly, the data of logistics demand are reconstructed, and then the complex nonlinear change rule of logistics demand is explained through LSSVM, and the parameters of LSSVM model are optimized by ACO, and lastly, the performance of mode are tested by logistics demand data. The simulation results show that ACO-LSSVM has improved the forecasting accuracy of logistics demand, and which is an effective method for logistics demand forecasting.

    Reference
    1 蔡临宁.物流系统规划—建模及实例分析[M].北京:机械工业出版社,2003.6.5-6
    2 Garrido RA,Mahmassanih S.Forecasting freight transportation demand with the space-time multinomial probity model. Trans on Research PartB,2000,34(5):403-418.
    3 Fite J,Taylor G,Usher J,et al.Forecasting freight demand using economic indices.International Journal of Physical Distribu-tion & Logistics Management,2001,31(4):99-102.
    4 Fite J,Taylor G,Usher J,Roberts J.Forecasting freight demand using economic indices.International Journal of Physical Dis-tribution & Logistics Management,2001,31(4):299.
    5 陈森,周峰.基于灰色系统理论的物流需求预测模型.统计与决策,2006(3):59-60.
    6 尹艳玲.基于自适应神经网络的物流需求预测研究.河南理工大学学报(自然科学版),2010,29(5):700-704.
    7 耿勇,鞠颂东,陈娅娜.基于BP神经网络的物流需求分析与预测.物流技术,2007,26(7):35-37.
    8 后锐,张毕西.基于MLP神经网络的区域物流需求预测方法及其应用.系统工程理论与实践,2005(12):43-47.
    9 胡燕祝,吕宏义.基于支持向量回归机的物流需求预测模型研究.物流技术,2008,27(5):66-68.
    10 王丽华.基于GA-LSSVR 的图书馆文献资源需求预测. 计算机应用与软件,2011,28(6):225-228.
    11 Sumim T,Ongsakul W.Ant colony search algorithm for unit commitment.IEEE International Conference on Industrial Technology,2003,1(6):72-77.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

孙志刚.蚁群优化支持向量机的物流需求预测.计算机系统应用,2013,22(5):107-110

Copy
Share
Article Metrics
  • Abstract:1439
  • PDF: 2838
  • HTML: 0
  • Cited by: 0
History
  • Received:October 19,2012
  • Revised:November 29,2012
Article QR Code
You are the first990475Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063