Transformer Fault Diagnosis Method Based on IPSO-BP Neural Network
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Standard particle swarm optimization (PSO) algorithm just takes simple linear attenuation way to update the inertia weight, so it can not get the global optimum value. In order to solve this problem, in the paper, an improved particle swarm optimization (IPSO) algorithm is proposed, which is combined with the error back propagation neural network (BPNN), then a new transformer fault diagnosis method based on IPSO-BPNN is presented. The method gets the number of times for which the individual particle is continuously selected as the optimal point, which is taken as an adaptive variable and is used to adaptively adjust the inertia weight along with the particle's performance classification, so as to balance the local and global search capabilities. A large number of simulation shows that the algorithm is better than the BPNN and PSO-BPNN based transformer fault diagnosis system, and it can get a higher correct rate of transformer fault diagnosis.

    Reference
    Related
    Cited by
Get Citation

张锐,韩超,李晓娜.基于IPSO-BP神经网络的变压器故障诊断方法.计算机系统应用,2013,22(4):125-128

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 24,2012
  • Revised:October 28,2012
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063