Classification and Research of LLE Method
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    For classification of low-dimensional data is very common, but not for the classification of high-dimensional data, mainly because of too high dimension. In particular, for the uneven distribution of the sample set, the traditional locally linear embedding(LLE) algorithm is vulnerable to the impact of the number of nearest neighbor points, In order to overcome this problem, this paper improves locally linear embedding algorithm by changing the distance. Through the experiments indicates that the improved distance locally linear embedding algorithm can make the original sample set distribute evenly as far as possible, thereby reducing the influence of selection of the number of nearest neighbor points on locally linear embedding, on the premise of ensuring accurate classification, to achieve the purpose of effectively shorten the time.

    Reference
    Related
    Cited by
Get Citation

屈治礼. LLE方法的分类与研究.计算机系统应用,2013,22(4):14-17,50

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 19,2012
  • Revised:October 13,2012
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063