Improved Learning Algorithm for RBF Neural Network
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This paper introduces a hybrid learning algorithm for Radial Basis Function neural network(RBFNN) based on subtractive clustering, K-means clustering and particle swarm optimization algorithm(PSO). The algorithm can be used to determine the number of hidden layer nodes and initial clustering centers of K-means by using subtractive clustering; Then the initial particle swarm of PSO can be formed by K-means clustering algorithm.The basic PSO algorithm are optimized and developed to improving convergence and stability of the algorithm, and finally the improved PSO algorithm is used to train all the parameters of RBFNN. The simulation for IRIS data set classification problem is executed, the experiment results show that the improved hybrid algorithm has higher accuracy and better stability than several other popular methods.

    Reference
    Related
    Cited by
Get Citation

马骏,尉广军.一种改进的RBF神经网络学习算法.计算机系统应用,2013,22(2):84-87,47

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 05,2012
  • Revised:September 02,2012
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063