The Application of Clustering and Associate Rule Mining to Fraud Information Identification
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Considering that with the rapid expansion of electronic data, the traditional audit approachs can not cope with vast business data, this paper intend to introduce the Clustering and Association Rule Mining in the audit fields. Based on the study of the meaning of Clustering and Association Rule Mining and their Algorithm—K-Means and Apriori, this article proposed an audit model which is based on the Clustering and Association Rule Mining, at the same time, taking the audit of medical insurance of some a city as an example, it detailed first how to use the Clustering to filter data, then how to mining the potential relationships in vast data so as to determine the audit priorities and audit clues.Through the case, the article is committed to provide a reference for the application of data mining in the fraud information identification.

    Reference
    Related
    Cited by
Get Citation

幸莉仙,黄慧连.聚类与关联规则在信息舞弊识别中的应用.计算机系统应用,2012,21(12):149-152

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 07,2012
  • Revised:June 26,2012
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063