Particle Filter Algorithm Inserting Mean Shift for Object Tracking
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Traditional particle filter algorithm needs a large number of particles to show posteriori probability density function of object state, the calculation of this algorithm is large, and the real-time of tracking is poor, so it is hard to track fast and sheltered object accurately. Considering above problems, this paper proposes a new algorithm that is inserting Mean Shift into particle filter algorithm, this method can make full use of clustering effect of Mean shift to make particles distributed more reasonably, which not only improves the diversity of the particles but also greatly reduces the number of particles used to describe object state. The experimental results show that the improved algorithm has stronger robustness and better real-time performance.

    Reference
    Related
    Cited by
Get Citation

侯一民,贺子龙.嵌入Mean Shift 的粒子滤波目标跟踪算法.计算机系统应用,2012,21(12):80-84

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 22,2012
  • Revised:June 19,2012
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063