Improved Global K-Means and Its Application in Beer System
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    K-means algorithm has been limited by the main questions which are the problems to determine the number of clusters, initial cluster center points of selection and to avoid isolating the problem. To solve these problems the algorithm has been improved in this paper and the paper has applied the improved algorithm and dynamic recurrent fuzzy neural network to the beer fermentation systems. Because of complex neural network structure, the particle swarm optimization algorithm can be used to optimize connected network structure of the connection weights between layers and the network topology. This PSO does not easily trapped local minima and has better generalization ability. At the same time, in practical application the principle of improved PSO algorithm is simple and has less parameter so that it’s easier to realize.

    Reference
    Related
    Cited by
Get Citation

张忠厚,赵龙.改进的全局K 均值算法及其在啤酒系统中的应用.计算机系统应用,2012,21(8):194-196,239

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 30,2011
  • Revised:January 07,2012
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063