Classification Model Based on the Mean Update
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The minimum distance classification algorithm and the nearest neighbor classification algorithm are the simplest, most rapid and most effective classification methods, and they are more sensitive to the noise. But to the training samples in few or the training samples that are far from the cluster center, the classification results is poor. To solve this problem, this paper proposes a classification model based on the mean update (MU), by expanding the training sample and updating the mean center to improve the classification results of the test data; and on this basis, it proposes the MU-based minimum distance (MU-MD) classification model, and uses the MU's classification results to recalculate the mean of all test samples, then all test samples are re-divided by using the minimum distance method, so as to determine the final category attribution. This can partially correct misclassification in the MU category process and further improve the classification results.

    Reference
    Related
    Cited by
Get Citation

冯进玫,卢志茂,陈纯锴.一种基于均值更新的分类模型.计算机系统应用,2012,21(8):123-126,135

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 16,2012
  • Revised:March 12,2012
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063