Coal Mine Safety Evaluation Model Based on Quantum Genetic Algorithm
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [10]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    The coal mine safety evaluation involves many uncertain information. It is difficult to ensure the accuracy and reliability of finall consequence using traditional evaluation method. Therefore it uses RBF neural net to design the coal mine safety evaluation model, according to the practical situation of our country’s coal mine. Through the accident tree analysis(FTA)and event tree analysis(ETA), this paper summarized coal mine accident risk factors and influenced of mine production safety factors. Meanwhile in order to overcome the neural net easy to fall into the local minimum, neural net model of the right value (threshold) is optimized using quantum genetic algorithm. The method is used in fuxin mining company of a subordinate mine. Results show that the model can accurately evaluate coal mine safety in production, for coal mine safety evaluation provided a new way, having important significance for coal mine safety in production.

    Reference
    1 董建美.我国煤矿事故多发的原因分析及对策.国土资源, 2007,(1):22-25.
    2 何学秋,等.安全工程学.徐州:中国矿业大学出版社,2000. 155-179.
    3 国家安全生产监督管理局.安全评价.北京:煤炭工业出版社,2002.1-313.
    4 韩斌君.我国煤矿安全事故致因研究[硕士学位论文].上海:同济大学,2007.
    5 刘海波,施式亮,刘宝探.人工神经网络对矿山安全状态的评判能力分析.安全与环境学报,2004,(5):69-72.
    6 张德丰.神经网络应用设计.北京:机械工业出版社,2009. 70-78.
    7 王小平,曹立明.遗传算法—理论应用与软件实现.西安:西安交通大学出版社,2002.80-95.
    8 Yang JA, Li B, Zhuang ZQ. Multi-universe parallel quantum genetic algorithm its application to blind source separation. Proc. of IEEE Int’l Conf. on Neural Networks & Signal Processing. New York: IEEE Press, 2003,12: 393-398.
    9 王凌,吴昊,唐芳.混合量子遗传算法及其性能分析.控制与决策,2005,20(2):156-158.
    10 李欣,程春田.曾筠.基于改进量子遗传算法的过程神经元网络训练.控制与决策,2009,24(3):347-351.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李鑫,李乃文,杨桢.基于量子遗传算法的煤矿安全评价模型.计算机系统应用,2012,21(7):101-105

Copy
Share
Article Metrics
  • Abstract:1469
  • PDF: 3148
  • HTML: 0
  • Cited by: 0
History
  • Received:October 25,2011
  • Revised:December 26,2011
Article QR Code
You are the first990540Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063