Least Squares Support Vector Machine Based on Exponentially Weighted Feature
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    According to the basic principle of support vector regression algorithm, for the difference of features` correlative degree to the regression, the affect of parameters to the performance of forecast and taking into account the significance of weighted feature after normalization, least squares support vector regression machine (LS-SVR) based on weighted feature is proposed in this paper, in which, least squares support vector regression algorithm is used to reduce the number of parameters and exponentially weighted feature is used to improve prediction accuracy, the weighting coefficients are determined by the grey correlation degree approach. In the meantime, the effectiveness of the algorithm is demonstrated in forecasting the actual stock price. The experimental results show that it is superior to classical support vector machine and can significantly improve the predictive ability.

    Reference
    Related
    Cited by
Get Citation

潘岚,王仲君.基于特征指数加权的最小二乘支持向量机算法.计算机系统应用,2012,21(5):205-208

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 01,2011
  • Revised:October 06,2011
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063