Dialect Identification Based on PCA and LDA
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [8]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    In order to solve the low dialect identification rate because PCA doesn’t effectively use the sample classification information, a method of feature extraction using PCA and LDA is employed. In this paper, PCA is used to effectively reduce the dimensions of Mandarin, Shanghainese, Cantonese, Minnanese, and then LDA is adopted to extract feature vectors from the dimension-reduced space as the input vectors with BP neural network to recognize. The Simulation results demonstrate that the average dialect identification rate based on PCA and LDA can be up to 85%.

    Reference
    1 夏鹏,张浩然,徐展敏.一种增量PCA 算法及其在人脸识别中的应用.计算机工程与应用,2008,44(6):228-230.
    2 史笑兴,王太君,何振亚.基于主元分析的语音特征提取.第九届全国信号处理学术年会,1999:258-261.
    3 王海珍.基于LDA 的人脸识别技术研究.西安:西安电子科技大学,2010.
    4 王安娜,王勤万,刘俊芳,袁文静.改进的语音特征提取方法及其应用.计算机工程,2008,34(5):196-200.
    5 Yang J, Yang JY. Why can LDA be performed in PCA transformed space. Pattern Recognition, 2003,36:563-566.
    6 Myoung SP, Jin HN, Jin YC. PCA-based feature extraction using class information. Proc. of 2005 IEEE International Conference on Systems, Man and Cybernetics. 2005: 341-345.
    7 Dagher I. Incremental PCA-LDA algorithm. Proc. of 2010 IEEE International Conference on Computational Intelligence Measurement Systems and Applications. 2010:97-101.
    8 庄哲民,张阿妞,李芬兰.基于优化的LDA 算法人脸识别研究.电子与信息学报,2007,29(9):2047-2049.
    Related
    Cited by
Get Citation

何艳,于凤芹.基于 PCA 和 LDA 的方言辨识.计算机系统应用,2012,21(5):169-171,179

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 18,2011
  • Revised:September 26,2011
Article QR Code
You are the first990607Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063