Particle Swarm Optimization Algorithm with Self Adapting Inertia Weight
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the process of solving all kinds of optimization problems, local searching and global searching performance of swarm optimization algorithm play an important role. In particle swarm optimization (PSO) algorithm, the inertia weight has a certain effect on convergence and stability. Inspired by the effect of inertia weight on convergence of PSO, a new modified strategy for inertia weight is proposed based on fitness value. Comparative experiments of benchmark functions indicate that this new strategy could make the particles various to get the strong ability to keep from plunging local optimum and improve the astringency speed in the end of searching. Experiment results show that it is effective for prematurity and improve the ability of convergence.

    Reference
    Related
    Cited by
Get Citation

孔艳,熊伟丽,高淑梅.一种单个粒子自适应修正的粒子群算法.计算机系统应用,2012,21(5):86-90

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 31,2011
  • Revised:October 05,2011
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063