Variables Screening Methods Based on the Optimization of RBF Neural Network
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Because of the Characteristics of RBF neural network structure is simple, output and initialized weights irrelevant, adaptive, less adjustable parameter etc. This paper proposes using the method of cross validation to find the optimal parameter value of SPREAD, constructs the optimal RBF neural network model and combines the algorithm of MIV to use for variables screening. Through the example test the validity of the model, also make the method has better ability of stability and applied.

    Reference
    Related
    Cited by
Get Citation

徐富强,刘相国.基于优化的RBF 神经网络的变量筛选方法.计算机系统应用,2012,21(3):206-208

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 24,2011
  • Revised:July 17,2011
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063