A Global Memetic Optimization Algorithm for Solving High-Dimensional Problems Based on Differential Evolution and Simulate Anneal
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at high-dimensional multimodal optimization problems, traditional evolutionary algorithms have shortcomings, such as low convergence speed and solution precision. A global optimization algorithm based on Memetic algorithm using global search strategy and local search strategy is proposed to resolve the high-dimensional problem. The global search strategy is a multi-model parallel differential evolution. An improved Simulate Anneal Arithmetic is used for local search strategy. The improved Memetic algorithm inherits advantages of the differential evolution algorithm to discover the global optimal solution and overcomes the deficiencies of the differential evolution algorithm. Finally, four benchmark functions are used to test this algorithm. Experimental result illustrates that it has some advantages in convergence velocity, solution precision, and stabilization.

    Reference
    Related
    Cited by
Get Citation

拓守恒.基于DE 和SA 的Memetic 高维全局优化算法.计算机系统应用,2012,21(2):93-97

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 08,2011
  • Revised:July 17,2011
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063