Classification Algorithm for Concept-Drifting Data Stream Based on Subspace Integration
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The classification of concept-drifting data streams with complex category structures has recently becomes one of the most popular topics in data mining. This paper proposes a novel subspace classification method, and uses it to form an ensemble classifier in a hierarchical structure for concept-drifting data streams classification. After dividing a given data stream into several data blocks, it uses the subspace classification method to train some bottom classifiers on each data block, and then uses these bottom classifiers to form a base classifier. The base classifers are used to build the ensemble classifier. Meanwhile, it introduces the parameter estimation method to detect concept drift. Experimental results show that the proposed method does not only significantly improve the classification performance on datasets with complex category structures, but also quickly adapts to the situation of concept drift.

    Reference
    Related
    Cited by
Get Citation

李南,郭躬德.基于子空间集成的概念漂移数据流分类算法.计算机系统应用,2011,20(12):240-248

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 19,2011
  • Revised:May 29,2011
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063