Fabric Defects Classification and Identification Based on the Subtracted Images of Wavelet Coefficients
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Fabric defect characteristic curves of the wavelet coefficients are vulnerable to periodic noise in all layers. It cannot effectively extract features and locate defects area. This paper proposed a method of feature extraction and defect segmentation based on the parameters of entropy, energy, variance curve of difference coefficient after wavelet transform. Firstly, it subtracts the horizontal and vertical high-frequency decomposition coefficients with the smoothing coefficients after wavelet transform, removes the periodic noise, extracts maximum, mean and deviation parameters from the curve difference horizontal and vertical coefficient. Then, it uses support vector machine to classify the extracted features. Simulation results show that the method can effectively locate and segement fabric defect region, and the recognition rate increased by 4.17% compared with the features extracted by wavelet coefficients.

    Reference
    Related
    Cited by
Get Citation

赵静,于凤芹.基于小波域差值系数的织物疵点分割与识别.计算机系统应用,2011,20(10):109-112,128

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 01,2011
  • Revised:March 25,2011
  • Adopted:
  • Online:
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063